The functions se_lom, re_lom, hce_lom, and ae_lom provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Lomax distribution and \(\delta\).
Arguments
alpha
The strictly positive shape parameter of the Lomax distribution (\(\alpha > 0\)).
beta
The strictly positive scale parameter of the Lomax distribution (\(\beta > 0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the Lomax distribution:
$$
f(x)=\frac{\alpha}{\beta}\left(1+\frac{x}{\beta}\right)^{-\alpha-1},
$$
where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\).
References
Abd-Elfattah, A. M., Alaboud, F. M., & Alharby, A. H. (2007). On sample size estimation for Lomax distribution. Australian Journal of Basic and Applied Sciences, 1(4), 373-378.